Translational Research to Improve the Efficacy of Carbon Ion Radiotherapy: Experience of Gunma University

نویسندگان

  • Takahiro Oike
  • Hiro Sato
  • Shin-ei Noda
  • Takashi Nakano
چکیده

Carbon ion radiotherapy holds great promise for cancer therapy. Clinical data show that carbon ion radiotherapy is an effective treatment for tumors that are resistant to X-ray radiotherapy. Since 1994 in Japan, the National Institute of Radiological Sciences has been heading the development of carbon ion radiotherapy using the Heavy Ion Medical Accelerator in Chiba. The Gunma University Heavy Ion Medical Center (GHMC) was established in the year 2006 as a proof-of-principle institute for carbon ion radiotherapy with a view to facilitating the worldwide spread of compact accelerator systems. Along with the management of more than 1900 cancer patients to date, GHMC engages in translational research to improve the treatment efficacy of carbon ion radiotherapy. Research aimed at guiding patient selection is of utmost importance for making the most of carbon ion radiotherapy, which is an extremely limited medical resource. Intratumoral oxygen levels, radiation-induced cellular apoptosis, the capacity to repair DNA double-strand breaks, and the mutational status of tumor protein p53 and epidermal growth factor receptor genes are all associated with X-ray sensitivity. Assays for these factors are useful in the identification of X-ray-resistant tumors for which carbon ion radiotherapy would be beneficial. Research aimed at optimizing treatments based on carbon ion radiotherapy is also important. This includes assessment of dose fractionation, normal tissue toxicity, tumor cell motility, and bystander effects. Furthermore, the efficacy of carbon ion radiotherapy will likely be enhanced by research into combined treatment with other modalities such as chemotherapy. Several clinically available chemotherapeutic drugs (carboplatin, paclitaxel, and etoposide) and drugs at the developmental stage (Wee-1 and heat shock protein 90 inhibitors) show a sensitizing effect on tumor cells treated with carbon ions. Additionally, the efficacy of carbon ion radiotherapy can be improved by combining it with cancer immunotherapy. Clinical validation of preclinical findings is necessary to further improve the treatment efficacy of carbon ion radiotherapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon Ion Radiotherapy at the Gunma University Heavy Ion Medical Center: New Facility Set-up

Carbon ion radiotherapy (C-ion RT) offers superior dose conformity in the treatment of deep-seated tumors compared with conventional X-ray therapy. In addition, carbon ion beams have a higher relative biological effectiveness compared with protons or X-ray beams. C-ion RT for the first patient at Gunma University Heavy Ion Medical Center (GHMC) was initiated in March of 2010. The major specific...

متن کامل

The compact electron cyclotron resonance ion source KeiGM for the carbon ion therapy facility at Gunma University.

A high-energy carbon-ion radiotherapy facility is under construction at Gunma University Heavy Ion Medical Centre (GHMC). Its design was based on a study of the heavy ion radiotherapy at the National Institute of Radiological Sciences (NIRS) in order to reduce the size and construction cost of the facility. A compact electron cyclotron resonance ion source (ECRIS) for Gunma University, called K...

متن کامل

Recent Progress of Heavy-ion Cancer Radiotherapy with Nirs-himac

The carbon-ion radiotherapy (RT) with HIMAC has been conducted since 1994, and the accumulated number of patients treated exceeded 7,500 in July 2013. On the basis of the HIMAC experience, NIRS developed a compact carbon-ion RT facility in order to boost the carbon-ion RT in Japan, and a pilot facility of this work was constructed and conducted at the Gunma University. Toward the further develo...

متن کامل

Operation of Keigm for the Carbon Ion Therapy Facility at Gunma University

Carbon-ion radiotherapy is being carried out at Gunma University Heavy Ion Medical Centre (GHMC) since March 2010. A compact electron cyclotron resonance ion source (ECRIS) for GHMC, so-called KeiGM, supplies carbon 4+ ions for treatment. The general structure of KeiGM was copied from a prototype compact source, socalled Kei2. Based on experimental studies for production of carbon 4+ ions with ...

متن کامل

Calculation of total dose and dose equivalent distribution in the treatment of lung cancer using MR-guided carbon therapy

Nowadays, in order to improve the accuracy of treatment in radiation therapy, there are many attempts to use magnetic resonance imaging (MRI) due to the advantages of excellent soft tissue contrast and ultra-fast pulse sequences. On the other hand, carbon-ion radiation therapy is developing rapidly due to the benefits of greater relative biological effectiveness (RBE) and the application in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016